← Back to Session

Questions Answered: 127

Final Score 99%

126
1

Questions

  • Q1. Correct
  • Q2. Correct
  • Q3. Correct
  • Q4. Correct
  • Q5. Correct
  • Q6. Correct
  • Q7. Correct
  • Q8. Correct
  • Q9. Correct
  • Q10. Correct
  • Q11. Correct
  • Q12. Correct
  • Q13. Correct
  • Q14. X Incorrect
  • Q15. Correct
  • Q16. Correct
  • Q17. Correct
  • Q18. Correct
  • Q19. Correct
  • Q20. Correct
  • Q21. Correct
  • Q22. Correct
  • Q23. Correct
  • Q24. Correct
  • Q25. Correct
  • Q26. Correct
  • Q27. Correct
  • Q28. Correct
  • Q29. Correct
  • Q30. Correct
  • Q31. Correct
  • Q32. Correct
  • Q33. Correct
  • Q34. Correct
  • Q35. Correct
  • Q36. Correct
  • Q37. Correct
  • Q38. Correct
  • Q39. Correct
  • Q40. Correct
  • Q41. Correct
  • Q42. Correct
  • Q43. Correct
  • Q44. Correct
  • Q45. Correct
  • Q46. Correct
  • Q47. Correct
  • Q48. Correct
  • Q49. Correct
  • Q50. Correct
  • Q51. Correct
  • Q52. Correct
  • Q53. Correct
  • Q54. Correct
  • Q55. Correct
  • Q56. Correct
  • Q57. Correct
  • Q58. Correct
  • Q59. Correct
  • Q60. Correct
  • Q61. Correct
  • Q62. Correct
  • Q63. Correct
  • Q64. Correct
  • Q65. Correct
  • Q66. Correct
  • Q67. Correct
  • Q68. Correct
  • Q69. Correct
  • Q70. Correct
  • Q71. Correct
  • Q72. Correct
  • Q73. Correct
  • Q74. Correct
  • Q75. Correct
  • Q76. Correct
  • Q77. Correct
  • Q78. Correct
  • Q79. Correct
  • Q80. Correct
  • Q81. Correct
  • Q82. Correct
  • Q83. Correct
  • Q84. Correct
  • Q85. Correct
  • Q86. Correct
  • Q87. Correct
  • Q88. Correct
  • Q89. Correct
  • Q90. Correct
  • Q91. Correct
  • Q92. Correct
  • Q93. Correct
  • Q94. Correct
  • Q95. Correct
  • Q96. Correct
  • Q97. Correct
  • Q98. Correct
  • Q99. Correct
  • Q100. Correct
  • Q101. Correct
  • Q102. Correct
  • Q103. Correct
  • Q104. Correct
  • Q105. Correct
  • Q106. Correct
  • Q107. Correct
  • Q108. Correct
  • Q109. Correct
  • Q110. Correct
  • Q111. Correct
  • Q112. Correct
  • Q113. Correct
  • Q114. Correct
  • Q115. Correct
  • Q116. Correct
  • Q117. Correct
  • Q118. Correct
  • Q119. Correct
  • Q120. Correct
  • Q121. Correct
  • Q122. Correct
  • Q123. Correct
  • Q124. Correct
  • Q125. Correct
  • Q126. Correct
  • Q127. Correct

Procedural Skills (SLO6)

Question 121 of 127

An 18 year old female student, who is known to have type 1 diabetes mellitus presents to ED with polyuria, polydipsia, nausea and abdominal pain. She admits to not taking her insulin properly as she doesn't want to gain weight. Her blood glucose is 28.1 mmol/l and urinary ketones are +++. Her arterial blood gas and urea and electrolytes are shown:

  • pH 7.19
  • PaO2 12.1 kPa
  • PaCO2 3.2 kPa
  • HCO3- 5 mmol/L
  • K+  4.5 mmol/L
  • Na+ 140 mmol/L
  • Cl- 100 mmol/L
  • Urea 6.0 mmol/l
  • Creatinine 90 µmol/l

What is the anion gap?

Answer:

The anion gap can be calculated as: ([Na+] + [K+]) - ([Cl-] + [HCO3-]) = (140 +4.5) - (100 + 5) = 144.5 - 105 = 39.5 mmol/L. The normal anion gap varies with different assays but is typically between 4 to 12 mmol/L.

Arterial Blood Gas Analysis

Normal ABG values

RCEM defines the normal values for blood gases as:

  • pH = 7.35 - 7.45
  • pO2 (on air) = 11 - 14 kPa
  • pCO2 = 4.5 - 6.0 kPa
  • HCO3- = 24 - 30 mmol/L
  • BE = +/- 2 mmol/L

Base Excess

  • Base excess is defined as the amount of strong acid that must be added to each litre of fully oxygenated blood to return the pH to 7.40 at a temperature of 37 °C and a pCO2 of 40 mmHg (5.3 kPa). A negative base excess (a base deficit) can be correspondingly defined in terms of the amount of strong base that must be added.
  • A typical reference range for base excess is -2 to +2 mmol/L.
  • A base excess higher than +2 mmol/L indicates:
    • Primary metabolic alkalosis or
    • Compensation for primary respiratory acidosis
  • A base excess more negative than -2 mmol/L (a base deficit) indicates:
    • Primary metabolic acidosis or
    • Compensation for primary respiratory alkalosis

Interpretation of ABG Results

  1. Assess the patient clinically
  2. Assess PaO2 (in the context of any supplemental oxygen)
    • As a rule of thumb the PaO2 should be numerically about 10 less than the inspired oxygen concentration (%); if there is a difference of greater than 10 between the two values, there is a defect in oxygenation, proportional to the magnitude of the difference (so a patient breathing room air should have a PaO2 10.0 - 13.0 kPa)
    • PaO2 < 10 kPa on air = hypoxaemia
  3. Assess pH
    • pH < 7.35 = acidaemia
    • pH > 7.45 = alkalaemia
  4. Assess PaCO2
    • pH < 7.35 and PaCO2 > 6.0 kPa = respiratory acidosis
    • pH > 7.45 and PaCO2 < 4.7 kPa = respiratory alkalosis
  5. Assess base excess (BE) and bicarbonate
    • pH < 7.35 and BE < - 2 mmol/L and/or bicarbonate < 22 mmol/L = metabolic acidosis
    • pH > 7.45 and BE > +2 mmol/L and/or bicarbonate > 26 mmol/L = metabolic alkalosis

Respiratory Failure

  • Type 1 respiratory failure
    • Hypoxaemia (PaO2 <8 kPa) with normocapnia (PaCO2 <6.0 kPa)
    • Caused by ventilation/perfusion (V/Q) mismatch
      • The volume of air flowing in and out of the lungs is not matched with the flow of blood to the lung tissue. As a result of the VQ mismatch, PaO2 falls and PaCO2 rises. The rise in PaCO2 rapidly triggers an increase in a patient’s overall alveolar ventilation, which corrects the PaCO2 but not the PaO2 due to the different shape of the CO2 and O2 dissociation curves.
    • For example in:
      • Reduced ventilation and normal perfusion e.g. pulmonary oedema, bronchoconstriction
      • Reduced perfusion and normal ventilation e.g. pulmonary embolism
  • Type 2 respiratory failure
    • Hypoxaemia (PaO2 <8 kPa) with hypercapnia (PaCO2 >6.0 kPa)
    • Caused by alveolar hypoventilation
      • The volume of air flowing in and out of the lungs is not enough for the patient to adequately oxygenate and eliminate CO2 from their blood.
    • For example in:
      • Increased resistance as a result of airway obstruction e.g. COPD
      • Reduced compliance of the lung tissue/chest wall e.g. pneumonia, rib fractures, obesity
      • Reduced strength of the respiratory muscles e.g. Guillain-Barré, motor neurone disease
      • Drugs acting on the respiratory centre reducing overall ventilation e.g. opiates

Acid-Base Disturbance ABG Results

Acid-base disturbance pH PaCO2 HCO3-/BE
Respiratory acidosis
Respiratory alkalosis
Respiratory acidosis with metabolic compensation ↓/↔
Respiratory alkalosis with metabolic compensation ↑/↔
Metabolic acidosis
Metabolic alkalosis
Metabolic acidosis with respiratory compensation ↓/↔
Metabolic alkalosis with respiratory compensation ↑/↔
Mixed respiratory and metabolic acidosis
Mixed respiratory and metabolic alkalosis

Compensation

  • Respiratory acidosis/alkalosis (changes in CO2) can be metabolically compensated by increasing or decreasing the levels of HCO3- in an attempt to move the pH closer to the normal range.
  • Metabolic acidosis/alkalosis (changes in HCO3-) can be compensated by the respiratory system retaining or blowing off CO2 in an attempt to move the pH closer to the normal range.
  • Respiratory compensation for a metabolic disorder can occur quickly by either increasing or decreasing alveolar ventilation to blow off more CO2 ( to increase pH) or retain more CO2 (to decrease pH).
  • Metabolic compensation for a respiratory disorder, however, takes at least a few days to occur as it requires the kidneys to either reduce HCO3– production (to decrease pH) or increase HCO3– production (to increase pH). As a result, if you see evidence of metabolic compensation for a respiratory disorder (e.g. increased HCO3-/base excess in a patient with COPD and CO2 retention) you can assume that the respiratory derangement has been ongoing for at least a few days, if not more.
  • N.B. “Over-compensation” should never occur and therefore if you see something that resembles this you should consider other pathologies driving the change (e.g. a mixed acid/base disorder).

Respiratory Acidosis

Respiratory acidosis is caused by inadequate alveolar ventilation leading to CO2 retention.

Causes:

  • Respiratory depression e.g. opiates
  • Neurological, muscular or chest wall disease e.g. Guillain Barre
  • Lung disease or injury e.g. asthma, COPD
  • Iatrogenic (incorrect mechanical ventilation settings)

Respiratory Alkalosis

Respiratory alkalosis is caused by excessive alveolar ventilation (hyperventilation) resulting in more CO2 than normal being exhaled.

Causes:

  • Anxiety/panic attack
  • Pain
  • Hypoxia
  • Pulmonary embolism
  • Pneumothorax
  • Iatrogenic (excessive mechanical ventilation)

Metabolic Acidosis

Metabolic acidosis can occur due to:

  • Increased acid production e.g. lactic acidosis, ketoacidosis (DKA, alcohol, starvation)
  • Increased acid ingestion e.g. salicylate overdose, ethylene glycol poisoning
  • Decreased acid excretion e.g. acute or chronic renal failure
  • Increased gastrointestinal HCO3– loss e.g. chronic diarrhoea, ileal conduits, fistulae, small intestinal/pancreatic/biliary drains
  • Increased renal HCO3– loss e.g. renal tubular acidosis

Anion Gap:

  • The anion gap (AG) is a derived variable primarily used for the evaluation of metabolic acidosis to determine the presence of unmeasured anions. To work out if the metabolic acidosis is due to increased acid production or ingestion vs decreased acid excretion or loss of bicarbonate you can calculate the anion gap.
  • Anion gap = (Na+ + K+) – (Cl- + HCO3-) or (Na+) – (Cl- + HCO3-)
  • The normal anion gap varies with different assays but is typically between 4 to 12 mmol/L.
  • A high anion gap indicates increased acid production or acid ingestion (MUDPILES)
    • Methanol
    • Uraemia (in renal failure)
    • Diabetic ketoacidosis
    • Propylene glycol overdose
    • Infection/Iron overdose/Isoniazid/Inborn errors of metabolism
    • Lactic acidosis
    • Ethylene glycol overdose
    • Salicylate overdose
  • A normal anion gap indicates decreased acid excretion or loss of bicarbonate (FUSED CARS)
    • Fistula (pancreaticoduodenal)
    • Ureteroenteric conduit
    • Saline administration
    • Endocrine (hyperparathyroidism)
    • Diarrhoea
    • Carbonic anhydrase inhibitors (e.g. acetazolamide)
    • Ammonium chloride
    • Renal tubular acidosis
    • Spironolactone

Metabolic Alkalosis

Metabolic alkalosis occurs as a result of decreased hydrogen ion concentration, leading to increased bicarbonate, or alternatively a direct result of increased bicarbonate concentrations.

Causes:

  • Gastrointestinal loss of H+ ions e.g. vomiting, diarrhoea, pyloric stenosis, NGT drainage
  • Renal loss of H+ ions e.g. loop and thiazide diuretics, heart failure, nephrotic syndrome, cirrhosis, Conn’s syndrome
  • Ingestion of HCO3- e.g. sodium bicarbonate, antacid overdose
  • Iatrogenic (e.g. addition of alkali such as milk-alkali syndrome)

Mixed Acidosis/Alkalosis

  • It is possible to have a mixed acidosis or alkalosis (e.g. respiratory and metabolic acidosis/respiratory and metabolic alkalosis).
  • In these circumstances, the CO2 and HCO3- will be moving in opposite directions.
  • Treatment is directed towards correcting each primary acid-base disturbance.

Causes of mixed respiratory and metabolic acidosis:

  • Cardiac arrest
  • Multi-organ failure

Causes of mixed respiratory and metabolic alkalosis:

  • Liver cirrhosis in addition to diuretic use
  • Hyperemesis gravidarum
  • Excessive ventilation in COPD

Report A Problem

Is there something wrong with this question? Let us know and we’ll fix it as soon as possible.

Loading Form...

Close
  • Biochemistry
  • Blood Gases
  • Haematology
Biochemistry Normal Value
Sodium 135 – 145 mmol/l
Potassium 3.0 – 4.5 mmol/l
Urea 2.5 – 7.5 mmol/l
Glucose 3.5 – 5.0 mmol/l
Creatinine 35 – 135 μmol/l
Alanine Aminotransferase (ALT) 5 – 35 U/l
Gamma-glutamyl Transferase (GGT) < 65 U/l
Alkaline Phosphatase (ALP) 30 – 135 U/l
Aspartate Aminotransferase (AST) < 40 U/l
Total Protein 60 – 80 g/l
Albumin 35 – 50 g/l
Globulin 2.4 – 3.5 g/dl
Amylase < 70 U/l
Total Bilirubin 3 – 17 μmol/l
Calcium 2.1 – 2.5 mmol/l
Chloride 95 – 105 mmol/l
Phosphate 0.8 – 1.4 mmol/l
Haematology Normal Value
Haemoglobin 11.5 – 16.6 g/dl
White Blood Cells 4.0 – 11.0 x 109/l
Platelets 150 – 450 x 109/l
MCV 80 – 96 fl
MCHC 32 – 36 g/dl
Neutrophils 2.0 – 7.5 x 109/l
Lymphocytes 1.5 – 4.0 x 109/l
Monocytes 0.3 – 1.0 x 109/l
Eosinophils 0.1 – 0.5 x 109/l
Basophils < 0.2 x 109/l
Reticulocytes < 2%
Haematocrit 0.35 – 0.49
Red Cell Distribution Width 11 – 15%
Blood Gases Normal Value
pH 7.35 – 7.45
pO2 11 – 14 kPa
pCO2 4.5 – 6.0 kPa
Base Excess -2 – +2 mmol/l
Bicarbonate 24 – 30 mmol/l
Lactate < 2 mmol/l
©2017 - 2025 MRCEM Success